417 research outputs found

    Efficient ortho-para conversion of H2 on interstellar grain surfaces

    Full text link
    Context: Fast surface conversion between ortho- and para-H2 has been observed in laboratory studies, and this mechanism has been proposed to play a role in the control of the ortho-para ratio in the interstellar medium. Observations of rotational lines of H2 in Photo-Dissociation Regions (PDRs) have indeed found significantly lower ortho-para ratios than expected at equilibrium. The mechanisms controlling the balance of the ortho-para ratio in the interstellar medium thus remain incompletely understood, while this ratio can affect the thermodynamical properties of the gas (equation of state, cooling function). Aims: We aim to build an accurate model of ortho-para conversion on dust surfaces based on the most recent experimental and theoretical results, and to validate it by comparison to observations of H2 rotational lines in PDRs. Methods: We propose a statistical model of ortho-para conversion on dust grains with fluctuating dust temperatures, based on a master equation approach. This computation is then coupled to full PDR models and compared to PDR observations. Results: We show that the observations of rotational H2 lines indicate a high conversion efficiency on dust grains, and that this high efficiency can be accounted for if taking dust temperature fluctuations into account with our statistical model of surface conversion. Simpler models neglecting the dust temperature fluctuations do not reach the high efficiency deduced from the observations. Moreover, this high efficiency induced by dust temperature fluctuations is quite insensitive to the values of microphysical parameters of the model. Conclusions: Ortho-para conversion on grains is thus an efficient mechanism in most astrophysical conditions that can play a significant role in controlling the ortho-para ratio.Comment: Accepted in Astronomy & Astrophysic

    Surface chemistry in the Interstellar Medium II. H2\mathrm{H}_2 formation on dust with random temperature fluctuations

    Full text link
    The H2\mathrm{H}_2 formation on grains is known to be sensitive to dust temperature, which is also known to fluctuate for small grain sizes due to photon absorption. We aim at exploring the consequences of simultaneous fluctuations of the dust temperature and the adsorbed H-atom population on the H2\mathrm{H}_2 formation rate under the full range of astrophysically relevant UV intensities and gas conditions. The master equation approach is generalized to coupled fluctuations in both the grain's temperature and its surface population and solved numerically. The resolution can be simplified in the case of the Eley-Rideal mechanism, allowing a fast computation. For the Langmuir-Hinshelwood mechanism, it remains computationally expensive, and accurate approximations are constructed. We find the Langmuir-Hinshelwood mechanism to become an efficient formation mechanism in unshielded photon dominated region (PDR) edge conditions when taking those fluctuations into account, despite hot average dust temperatures. It reaches an importance comparable to the Eley-Rideal mechanism. However, we show that a simpler rate equation treatment gives qualitatively correct observable results in full cloud simulations under most astrophysically relevant conditions. Typical differences are a factor of 2-3 on the intensities of the H2\mathrm{H}_2 v=0v=0 lines. We also find that rare fluctuations in cloud cores are sufficient to significantly reduce the formation efficiency. Our detailed analysis confirms that the usual approximations used in numerical models are adequate when interpreting observations, but a more sophisticated statistical analysis is required if one is interested in the details of surface processes.Comment: 21 pages, 28 figures, accepted in A&

    A model for atomic and molecular interstellar gas: The Meudon PDR code

    Get PDF
    We present the revised ``Meudon'' model of Photon Dominated Region (PDR code), presently available on the web under the Gnu Public Licence at: http://aristote.obspm.fr/MIS. General organisation of the code is described down to a level that should allow most observers to use it as an interpretation tool with minimal help from our part. Two grids of models, one for low excitation diffuse clouds and one for dense highly illuminated clouds, are discussed, and some new results on PDR modelisation highlighted.Comment: accepted in ApJ sup

    Photodissociation of interstellar ArH+

    Full text link
    Aims. Following the recent detection of 36ArH+ in the Crab nebula spectrum, we have computed the photodissociation rate of ArH+ in order to constrain the physical processes at work in this environment. Methods. Photodissociation cross sections of ArH+ are computed in an ab initio approach including explicit account of spin-orbit coupling. Results. We report the photodissociation cross section of ArH+ as a function of wavelength. Photodissociation probabilities are derived for different impinging radiation fields.The photodissociation probability of for a very small unshielded cloud surrounded on all sides by the unshielded InterStellar Radiation Field (ISRF) model described by Draine (1978) is equal to 9.9e-12 s-1 and 1.9e-9 s-1 in the Crab nebula conditions. The dependence on the visual extinction is obtained by using the Meudon Photon Dominated Region (PDR) code and corresponding analytical fits are provided. Conclusions. These data will help to produce a realistic chemical network to interpret the observations. Photodissociation of ArH+ is found to be moderate and the presence of this molecular ion is mainly dependent on the molecular fractionComment: 11 pages, 6 Figures, Accepted in Astronomy Astrophysic

    Chemical sensitivity to the ratio of the cosmic-ray ionization rates of He and H2 in dense clouds

    Get PDF
    Aim: To determine whether or not gas-phase chemical models with homogeneous and time-independent physical conditions explain the many observed molecular abundances in astrophysical sources, it is crucial to estimate the uncertainties in the calculated abundances and compare them with the observed abundances and their uncertainties. Non linear amplification of the error and bifurcation may limit the applicability of chemical models. Here we study such effects on dense cloud chemistry. Method: Using a previously studied approach to uncertainties based on the representation of rate coefficient errors as log normal distributions, we attempted to apply our approach using as input a variety of different elemental abundances from those studied previously. In this approach, all rate coefficients are varied randomly within their log normal (Gaussian) distribution, and the time-dependent chemistry calculated anew many times so as to obtain good statistics for the uncertainties in the calculated abundances. Results: Starting with so-called ``high-metal'' elemental abundances, we found bimodal rather than Gaussian like distributions for the abundances of many species and traced these strange distributions to an extreme sensitivity of the system to changes in the ratio of the cosmic ray ionization rate zeta\_He for He and that for molecular hydrogen zeta\_H2. The sensitivity can be so extreme as to cause a region of bistability, which was subsequently found to be more extensive for another choice of elemental abundances. To the best of our knowledge, the bistable solutions found in this way are the same as found previously by other authors, but it is best to think of the ratio zeta\_He/zeta\_H2 as a control parameter perpendicular to the ''standard'' control parameter zeta/n\_H.Comment: Accepted for publicatio

    Interstellar H2 toward HD 37903

    Full text link
    We present an analysis of interstellar H2 toward HD 37903, which is a hot, B 1.5 V star located in the NGC 2023 reflection nebula. Meyer et al. (2001) have used a rich spectrum of vibrationally excited H2 observed by the HST to calculate a model of the interstellar cloud toward HD 37903. We extend Mayer's analysis by including the v"=0 vibrational level observed by the FUSE satellite. The T01 temperature should not be interpreted as a rotational temperature, but rather as a temperature of thermal equilibrium between the ortho and para H2. The ortho to para H2 ratio is lower for collisionally populated levels than for the levels populated by fluorescence. The PDR model of the cloud located in front of HD 37903 points to a gas temperature Tkin=110-377 K, hydrogen density nH=1874-544 cm^-3 and the star-cloud distance of 0.45 pc

    The ionization fraction gradient across the Horsehead edge: An archetype for molecular clouds

    Full text link
    The ionization fraction plays a key role in the chemistry and dynamics of molecular clouds. We study the H13CO+, DCO+ and HOC+ line emission towards the Horsehead, from the shielded core to the UV irradiated cloud edge, i.e., the Photodissociation Region (PDR), as a template to investigate the ionization fraction gradient in molecular clouds. We analyze a PdBI map of the H13CO+ J=1-0 line, complemented with IRAM-30m H13CO+ and DCO+ higher-J line maps and new HOC+ and CO+ observations. We compare self-consistently the observed spatial distribution and line intensities with detailed depth-dependent predictions of a PDR model coupled with a nonlocal radiative transfer calculation. The chemical network includes deuterated species, 13C fractionation reactions and HCO+/HOC+ isomerization reactions. The role of neutral and charged PAHs in the cloud chemistry and ionization balance is investigated. The detection of HOC+ reactive ion towards the Horsehead PDR proves the high ionization fraction of the outer UV irradiated regions, where we derive a low [HCO+]/[HOC+]~75-200 abundance ratio. In the absence of PAHs, we reproduce the observations with gas-phase metal abundances, [Fe+Mg+...], lower than 4x10(-9) (with respect to H) and a cosmic-rays ionization rate of zeta=(5+/-3)x10(-17) s(-1). The inclusion of PAHs modifies the ionization fraction gradient and increases the required metal abundance. The ionization fraction in the Horsehead edge follows a steep gradient, with a scale length of ~0.05 pc (or ~25''), from [e-]~10(-4) (or n_e ~ 1-5 cm(-3)) in the PDR to a few times ~10(-9) in the core. PAH^- anions play a role in the charge balance of the cold and neutral gas if substantial amounts of free PAHs are present ([PAH] >10(-8)).Comment: 13 pages, 7 figures, 6 tables. Accepted for publication in A&A (english not edited

    Detection of CO+ in the nucleus of M82

    Full text link
    We present the detection of the reactive ion CO+ towards the prototypical starburst galaxy M82. This is the first secure detection of this short-lived ion in an external galaxy. Values of [CO+]/[HCO+]>0.04 are measured across the inner 650pc of the nuclear disk of M82. Such high values of the [CO+]/[HCO+] ratio had only been previously measured towards the atomic peak in the reflection nebula NGC7023. This detection corroborates that the molecular gas reservoir in the M82 disk is heavily affected by the UV radiation from the recently formed stars. Comparing the column densities measured in M82 with those found in prototypical Galactic photon-dominated regions (PDRs), we need \~20 clouds along the line of sight to explain our observations. We have completed our model of the molecular gas chemistry in the M82 nucleus. Our PDR chemical model successfully explains the [CO+]/[HCO+] ratios measured in the M~82 nucleus but fails by one order of magnitude to explain the large measured CO+ column densities (~1--4x10^{13} cm^{-2}). We explore possible routes to reconcile the chemical model and the observations.Comment: 12 pages, 2 figure

    Projects in physics and numerical simulation in «licence de physique» (3 years university) : report of innovation

    Get PDF
    L'université Denis Diderot propose, en licence de physique, un module optionnel de modélisation et simulation numérique. Les étudiants peuvent ainsi aborder un problème de physique (quelconque) sur une durée assez longue (un semestre) et avec des outils permettant de dépasser la présentation axiomatique et scolaire habituelle de la physique. Ils apprennent ainsi à formaliser un problème, à émettre, tester et éventuellement rejeter des hypothèses, et découvrent par la pratique que la physique n'est pas une science achevée et qu'il est souvent utile de comparer plusieurs approches complémentaires d'une même question. Au passage, ils acquièrent la maîtrise de techniques utiles à tout physicien : maniement des outils informatiques, rudiments d'analyse numérique et de programmation, bibliographie et travail en équipe
    • …
    corecore